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Calculation of the transition matrix and of the occupation probabilities for the states
of the Oslo sandpile model
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The Oslo sandpile model, or if one wants to be precise, ricepile model, is a cellular automaton designed to
model experiments on granular piles displaying self-organized criticality. We present an analytic treatment that
allows the calculation of the transition probabilities between the different configurations of the system; from
here, using the theory of Markov chains, we can obtain the stationary occupation distribution, which tells us
that the phase space is occupied with probabilities that vary in many orders of magnitude from one state to
another. Our results show how the complexity of this simple model is built as the number of elements
increases, and allow, for small system sizes, the exact calculation of the avalanche-size distribution and other
properties related to the profile of the pile.
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I. INTRODUCTION AND DEFINITION OF THE OSLO slow-driving condition imposes that during the avalanches
MODEL the external addition of grains is interrupted; this implies that

the evolution of the modefand of the experimenktgakes
Self-organized criticalitf SOQ), born from the deep in- place in two separate time scales: a slow time scale for the
sights of Baket al, deals with the emergence of scale invari- grain addition and a fast time scale for the evolution of the
ance in slowly driven nonequilibrium systeni,2]. The avalanches. _
phenomenon is illustrated with the archetypical example of a In terms of the height of the column,h(x), and the local
pile of sand, and realized in computer simulations of diversélope, defined ag(x)=h(x)—h(x+1), taking h(L+1)
sandpile models, which are mainly based on the originaIEOv these prescriptions are expressed in the following rules
Bak-Tang-WiesenfeldBTW) model[3,4]. However, the rel- '
evance of SOC for real granular matter was unclear until
Frette etal. [5] performed experiments on a
1+ 1-dimensional pile of rice; these experiments and some
others[6—8] were modeled with a cellular automaton intro- h(x)—h(x)—-1
duced in Ref[6], later called the Oslo model. if  z(x)>zp(x)={ h(x+1)—h(x+1)+1 (1)
The Oslo model has the interest of beifas far as | Zin(X)—Nrang
know) the first SOC sandpile model or, more appropriately,

ricepile model, able to reproduce experimental results. Fofwhere the update is supposed to take place in paratiere

the avalanche propertig$], the concordance with experi- z,(x) refers to a local threshold, which rather than being

ments is only qualitative, whereas for the transport of indi-constant changes with every topplingxab a random value

vidual grains[6], and for the surface roughne$g], the n,,.4, chosen as

agreement is also quantitative. Moreover, the Oslo model is

remarkable as a simple model of SOC, because it displays 1 with probability p

this nontrivial behavior in one dimension. Nrand=
The model is designed to mimic the experimental situa-

t!on in Refs.[S—_?]: graips are slowly added at a fixgd POSi' These simple rules, Eg$l) and (2), together with the

tion on a quasi-one-dimensional substrate which is in be;

. . boundary condition,h(L+1)=0, completely define the

tween two parallel vertical plates; just at ttiet us say left - :

- L : Oslo model. Nevertheless, it is convenient to express(dle
of the position of addition a wall prevents the falling of the in terms onlv of the slooe. turning out to be
grains; on the other side, the right boundary is open. The y Pe, 9
model assumes a discrete space,1,2, ... L, from left to
right, as well as discrete time and fidlthe height of the pile,
or number of grains The grains pile up in columns until the

if z(X)< z;,(X)Vx=h(1)—h(1)+1,

2 with probability g=1—p. @

if Z(X)<z,(X)Vx=2(1)—2z(1)+1,

local slope somewhere is too large, then the upper grain be- 2(x)—2(x)—2
comes unstable and is transferred to the next column to the _ z(x—1)—z(x—1)+1
right (from x to x-+1). This transfer can induce further in- if z(X)>2zp(X)= 3)
stabilities and therefore a chain reaction or avalanche. A 2x+1)—z(x+1)+1
Zin(X)—Nrand
*Email address: alvaro.corral@uab.es forx=1,2,...L—1, and
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z(L)—z(L)—1 librium systems related to the quenched Edwards-Wilkinson
) B B equation[18—-21]. In a previous paper, | have also signaled
if z(L)>zp(L)= 2(L-D)—z(L=1)+1 the similarities between the Oslo model and the recurrence of
Zin(L)—Nrang real earthquakef22]. Also, variations and extensions of the
basic idea have been considerg28—29. Because of its

(taking into account that at=0 the z variable is not de- Simple definition and rich phenomenology related to experi-
fined). Notice how the dynamics of the grains has allowed tomentally observable quantities, we can consider the.OsIo
define a different dynamics for the units of slope, which canmodel as the analog of the Ising model for slowly driven
be considered as some kind of virtual particles. Both dynamcOmplex system§30]. _ _
ics are conservative, except at the boundaries, which curi- !N spite of these fascinating properties, our understanding
ously are reversed: the open end for the grains=at is a  Of the Oslo model comes mainly from computer simulations
closed boundary for the slopes and vice versa=atl. It is and some scaling arguments; no analytical solution exists or
important to have this in mind to avoid confusion. seems possible in the near futues is the general case for
The Oslo model is essentially the one-dimensional BTWnonequilibrium systems Hence, the exact enumeration of
model, but with fixed addition at=1 and an open boundary the number of states in the attractor for this model, per-
condition for the grains at=L. The key different ingredi- formed by Chua and Christensen, is very remarkaBlg.
ent, which makes the model critical in one dimension, is the! "€y found that this number increases exponentially with
selection of dynamically changing thresholds, to account foPYStém size as
the heterogeneities of a real system. In this way, whereas the

N ) . ) L -1~-L
randomness in the BTW sandpile is external, in the Oslo :aG +ta °G @)
model it is internal, as in real ricepile experiments. This spirit A \/E '
is original from the philosophy of Ref[9], although the
model there is much more complicated. with G the golden meanG=(3+5)/2=2.6, anda=(1

Even with the simplicity of its definition, Eq$l) and(2),  +/5)/2=1.6.
the Oslo model gives rise to an astonishing complex behav- [n this paper, we are going to derive exact expressions for
ior. As is usual in SOC systems, it shows a power-law disthe transition probabilities between states in the Oslo model;
tribution of avalanche sizei$,10] and avalanche durations using the results for a system of size-1 we will get these
[10], signaling the existence of no characteristic scales foprobabilities in a system of siZe. The increase in just one
the avalanche process. But also it has been shown that thait of the size of the system leads to an enormous increase
transport of the grains through the pile is anomalous, in thén the complexity of the resulting equations; we have a kind
sense that there is no normal diffusion but a power-law disof machine for building complexity. With the transition prob-
tributed transit timg6], spanning many orders of magnitude abilities it is possible to obtain the stationary occupation dis-
(just as it happens in the experiments, as we have menribution, which is the probability with which a state is vis-
tioned. This has been explained by the fact that the time thaited in the asymptotic regime. We will get that, in contrast to
a grain is trapped at a given position is also broadly distribother SOC models, the states in the attractor are not equally
uted[11,12, which has in its turn been related to a kind of likely; rather, the range of occupation probabilities varies
skewed fractional Brownian motion for the variations of the dramatically in many orders of magnitude. Once the station-
height, in the antipersistent ca$#3]. Moreover, the dis- ary occupation distribution is known, several other quanti-
tances traveled by the grains during an avalanche turn out tges, directly related with the profile of the pile, as the mean-
be Levy flights [11,12, i.e., again scale-free, despite the slope distribution and the avalanche-size distribution, can be
nearest-neighbor rules. Additionally, the time fluctuations ofobtained.(l have very recently become aware that Dhar has
the profile scale with a roughness exponent that is in goodindertaken an analysis of precisely the same profh&ah
concordance with the experimer{is,7]. In fact, the expo- nevertheless, his approach is entirely different from ours and
nents of all previous magnitudes can be related by sever#oth works can be considered as complementary to each
scaling laws. other)

Further, the time sequence of the transit times shows a
clear multifractal spectruriil4], whereas the time sequence Il. SOME PROPERTIES OF THE MODEL
of the mean slope displaysflhoise[15], in contrast to the
BTW model [2]. The model also allows one to study the  Two types of states, or configurations, are possible in the
transition from intermittent behavior to continuous flow, just system: unstable states, with at least one local slope value
increasing the driving rate and breaking the time-scale sepabove its local thresholdz(x)>zu(x), and metastable
ration [16]. Very recently it has been shown that a smallstates, where all the slopes are below threshaid)
damage performed in the system does not spread, and therez;,(X) VX. Unstable states evolve by means of avalanches
fore the sensitivity of the model to the initial conditions is towards metastable states, but the addition of a new grain can
quite different to that of chaotic systems and to what wagnake metastable configurations become unstable again, and
expected from systems “at the edge of chaps7]. On the  so on.
other hand, there exists an exact mapping between this We are only interested on metastable states. If we assume
model an a model of interface depinning, which establisheghat the initial slopeg(x) are not negativé33], the possible
the existence of a wide universality class for these nonequistable values for this variable are 0, 1, an@/2lues=3 are
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always unstable therefore, in a system of siZe a meta-  stochastic matrix(Further, a3V is constant through the time
stable configuration will be fully specified by dnvector  evolution, we are dealing with a homogeneous Markov
whose components are the slope values 0, 1, or 2. For irchain)

stance, we can consider a stat® bes={210 ... I which
meansz(1)=2, z(2)=1, z(3)=0, and so on up ta(L)
=1 (alternatively, the metastable statean be viewed as an
integer withL digits expressed in baseg.Notice that we do
not need to keep track of the thresholgg(x); this is so
because the dynamics can be described in an alternative but Some results from the theory of Markov chains can be

equivalent way, using the following rule: applied at this point. To get the stationary properties of the
pile it will be crucial to have a well defined stationary occu-
pation distribution; this quantity gives the probability with
2, toppling with probability p which every state is visited in the asymptotic regime, that is,
in the attractor, and it is represented by a vector where each
(5) component corresponds to a configuration of the system. The
stationary occupation distribution is simply referred to as the
We stress that this rule has to be applied only when the site atationary distribution in Markov-chain theory, but here we
x has received onér more units of slope or has toppled in are interested in many other probability distributions in the
the previous avalanchiéast time step.(This works because stationary case, as for instance that for the avalanche sizes.
we have only defined two possible values for the threshold{Another common name is ergodic distributipn.
with three values the situation would be more deligate. For completeness, let us explain that the attractor can be
A very useful property in order to study the evolution of defined as the set of recurrent, or persistent states, these be-
the system will be the Abelian symmetry, first considered ining the states for which the return probability is exactly 1.
sandpile models by Dha34]. It states that the order in More precisely, if a state is visited at some time, there is a
which units of slope are added and sites over thresholgrobability 1 that it will be visited again in the future. In
topple does not matter for the final configuration of the pile;contrast, for transient states this probability is smaller than 1,
therefore, we will be allowed to topple the sites in the mostor even zero.
convenient sequence to keep the process manageable in theAt this point it is convenient to use graph theory to rep-
calculations. The demonstration of this property in our caseesent a Markov chain: the transition probability matyix
is similar to that in Refs[.34 -3¢ but takes into account that defines a graph where nodieandj are directly connected if
we have evolving thresholds. If we consider two siteend ~ W;; #0, otherwise, there is no direct link betweemnd j;
y that are unstable it is easy to see that we get the same statet is, we have the graph of the possible transitions in one
no matter which one topples first, since after the toppling of(slow) time step.
X, sitey will still remain unstable, and the quantity that any = The existence of a unique stationary occupation distribu-
toppling site is reset and the quantity transferred to thdion, independent of the initial conditions, is guaranteed if
neighbors will be the same, independently of the order. Thehe graph associated with the mat¥iX has only one nonpe-
same reasoning can be extended to more than two overiodic final clasg37] (this is also a necessary conditjoi
threshold sites. But this is so only if the random thresholddinal class is a strongly connected component whose ele-
for sitesx andy are equally chosen in each possible sequencenents have no transitions to elements outside the class. A
of topplings, that is, we need a predefined sequence dftrongly connected component is a part of the graph in which
thresholds at each site, or, from a computational point ofny pair of nodes, or states, can be connected in both direc-
view, instead of having a single random number generator, #ons; in other wordsi, andf stay in a circuit and it is possible
different generator must be used for each site. From a similailo reach staté starting fromi and vice versa. A final class
reasoning as before, the addition of graies slopg at x represents then nothing else than an attractor in which the
=1 commutes with the toppling of any unstable site. system can settle after a transient period. The periodicity of a
On the other hand, the evolution of the pile can be destrongly connected component is the greatest common divi-
scribed by means of a finite Markov chain; indeed, the probsor of the length of their circuits; if this number is 1 the
ability that a given state transforms into another state degraph is nonperiodic. This is, for instance, the case in the
pends only on the two states, and not on the previous historgresence of loopscircuits with just one element, that is,
thanks to ruleg(5). In particular, the probability that a meta- W;; #0, for somei).
stable statd evolves to a new metastable statafter the Let us see which states of the pile constitute the attractor,
addition of one grain and at the end of the correspondingr final class. We have found it simpler to consider the con-
avalanche is independent of the previous states of the pileections between two states by means of the steepest meta-
and can be obtained by means of the unstable states thstlable state, which i§22...2 [i.e., the one withz(x)
separate the statésandj. These probabilities constitute a =2Vx], and then show which states lead to the steepest state
matrix that will be referred to a3V, with elementsW;; . and which ones result from it.
Probability theory imposes that;;=0 and that the files of In fact, all states can lead to the steepest state. To show
the matrix are normalized to @in the probabilistic senge this, we add grains and let the sites topple depending on their
i.e., 2;W;;=1. A matrix with these properties constitutes alocal thresholds, but after every toppling we assume that the

Ill. CHARACTERIZATION OF THE ATTRACTOR AND
EXISTENCE OF A UNIQUE STATIONARY
DISTRIBUTION

1 or less, no toppling
if z(x)has just

changed its value t
3 or greater, toppling.
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maximum threshold;,(x) =2 is always selected; then, we from the steepest state we go first to the configuration
are essentially in the same situation as in the one{...11...11..} (the same but replacing the 0 and 2 by
dimensional BTW model: every column in the pile grows to two 1's) with the thresholds equaling the slopes. So, any new
reach the steepest profile. In this way, adding enough grairgdded grain will travel the whole pile up to the exit. After
we will end in the steepest state. This is more easily seethis, for the site that has to have slope 2 we make its thresh-
applying the Abelian symmetry: we first add grains to buildold 2; an additional incoming grain will make the slope at
the first column, until it reaches the desired heightl) this site equal to 2 and that of the preceding site equal to
=2L, then we add more grains and let them topple to thezero; successive incoming grains will move the position of
second column until it reachég2)=2(L—1), and so on.  the zero to the desired site. When there are more zero-two
This is enough to ensure that there is only one final clasgpairs in the final configuration the generalization is straight-
although the only thing we know about it is that it includes forward if we start the previous procedure from the right.
the steepest state. If we continue with the characterization of This demonstrates that the condition that each zero must
the final class we will simply get the attractor studied in Ref.have a two to the right is a sufficient condition to belong to
[31]. the attractor. But further, the previous reasoning shows that
Contrary to the previous situation, not every state isstates violating this condition are not accessible from the
reachable from the steepest state. Consider first final statsteepest state, or from any other state which verifies the con-
without zeros, i.e.z;(x)=1 or 2, only¥x. One way to get dition. So, the condition is necessary and sufficient, and the
these states is the following: after the addition of the firstattractor proposed by Chua and Christensen constitutes the
grain, which crosses the whole pile arriving to the exit, weonly final class of the system.
fix the thresholds to the slopes of the desired final configu- Finally, it is easy to show the existence of loops in the
ration, z,,(x) = z¢(x) ¥x. Then, we apply the Abelian prop- final class: any state without zeros can return to the same
erty and start the toppling process of the remaining grainstate after the addition of one grain if this grain travels
from the rightmost sitex=L, emptying out this column through the whole pile and does not induce any other grain to
[from z(L)=2 to z(L)=z:(L)]; after this, we take the next topple. For this we need that sites with slope 1 have also
column to the leftL—1, and let every extra grain topple thresholds equal to 1 and sites with slope 2 keep their thresh-
until it leaves the pile. Repeating the same procedure we erlds equal to 2 after topplind.The probability of this is
in the desired statéwhich is therefore reachable after just P"q"~", wheren is the number of sites witl(x) = 1.] This
one avalanche Basically, we are in a one-dimensional ensures the nonperiodicity of the graph and completes the
BTW-like situation again, where the pile tends to a statedemonstration of the existence of a unique stationary distri-
2(X) =zyn(X). bution of state occupation. In a case like this, the Markov
When there are zeros in the configuratiaix)=0 for ~ chain is said to be regular.
somex, we cannot apply this trick since thresholds are de- Now that we know that there exists a stationary distribu-
fined as larger than zero. In fact, Chua and Christefi@&h  tion, how do we obtain it? Notice that all that we have al-
have noticed that these states do not necessarily belong to tFeady learnt about the system has been accomplished without
attractor: they argue that zeros have to be compensated Iyplicit knowledge of the transition probabilitié¥’ the rel-
twos[i.e., sites with slope(x) = 2]; to be precise, they show €vantissue was if the transition was possibig,# 0, or not.
that a necessary condition to belong to the attractor is that fdrlowever, to calculate the stationary distribution and proceed
each zero-slope site in the configuration there must be dtirther we need the calculation of the matrix elements.
least one two-slope site to the right, before the next zero or

before the exit. . , o IV. CALCULATION OF THE TRANSITION
Let us see that Chua and Chnstens_ens condition is also PROBABILITIES
sufficient to belong to the attractor: starting from the steepest _ _
state, the first zero appears whéfter a number of top- It is possible to derive the transition probabilities between

plings a site withz(x)=2 topples[if z,(x)=1] and the the metastable states in a pile of slzas a function of the

following site hasz(x+1)=1. Application of the rules gives transition probabilities for a size—1. Since we have fully

thenz(x)=0 andz(x+1)=2; if z,(x+1)=2 this site does Ccharacterized the attract¢81], we restrict the calculation

not topple and the configuration can be metastable. Now th&nly to these states, for the sake of conciseness. Note that

a zero exists, the same process can be repeated but with tAéhough the number of states in the attradtee. (4)] be-

zero-slope site receiving a grain; that is, we can hagge  comes astronomically large for the usual valued.of the

—1)=2 andz(x)=0, if z,(x—1)=1 we getz(x—1)=0,  Simulations, it constitutes a drastic reduction in front of the

z(x)=1, andz(x+1)=2; this means that the zero can move Number of metastable states, which Is &e.,

to the left, but is somehow associated with the existence of a

site with slope 2, and this slope 2 cannot disappear if the zero Na~2.6-<3", (6)

exists. In order to topple, site+ 1 would need the addition

of one grain, but grains come from the left and cannot reaclifor L large.

x+1 except if the zero is removed, i.e., any grain coming Starting fromL=1 there are only two possible states in

from the left would encounter the zero slope and by the ruleghe attractor{1} and{2} (state{O} is clearly transient since

of the model would stick there. the coordinatex=1 corresponds already to the boundary,
In general, to get a configuratiof...01...12..} where the toppling rules for the slope are spgcidle will
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label these two states as 1 andif this case the label is apply the Abelian property: let us topple first the subgjlest
straightforward, but not for largdr). Applying the rules of using the transition probabilitieg/(“ =) that we know and
the model we easily get then, at the end, let the origin topple. Of course, this gives
rise to an iterative process, where the procedure has to be
applied as many times as the origin topples, which,{d)
P q —hg(1)+1, | andF referring to the initial and final states.
wth= p qf (7)  The sequence is: first the origin topples, then, lthel sub-
pile to reach equilibrium, then the origin agdliih needed,
then the subpile, and so on.
Applying the previous argument to a general system of
sizeL one can find the rules for the transition probabilities. It
is convenient to define a variab@ as

where the superindefd) stresses that we are dealing with a
system of sizd.=1.

We can now considdr=2 and look at the different states
there, for instance,11}. What happens when we add a grain
at x=17? There is a probability that the origin topples, if L
not, we end in a statg21} with a probabilityq. If the origin Q=h(1)-L= z(x)—L; 9)
topples, the grain jumps to positiors=2 and there the prob- x=1
lem reduces to ai=1 problem, for which we know the
transition probabilities. In this case, we have to apply the . .
transitionspof state Iwhich remember are defined ptglzing we haveQ=0,1,... (J_L)ln.the attractof 31]. The equations
into account that one grain is added to this state at its lefdlor the elements ofy ™ will depend orAQ=Q, — Qg that
most position,x=2 now); as these transition probabilities is, the difference of) between the initial state and the final

(1) (1) .. state(defined here in the opposite way as ugutiis is so
Zg;w“ andWy;', we have for the statfl1} the probabili because the number of topplingsat1 is AQ+1. The

rules are given below and refer to the transition probabilities
between an initial staté with a value ofz(1)=z andL
q togotostate{z(1)z(2)}={21} —1 subpile statd and a final staté~ with z(1)=z¢ and
substatd, that is, a transitionZ ,i)— (z¢,f). Note how an
L state is completely characterized by the valug(df) and
the state(substatg of the L—1 subsystem. As with every
toppling of the originQ decreases in one unit, we will use
the following relation to calculate(1):

2 pW P=p? toreturnto {11}
W =
022~ ) pwWid=pq  to go to {02}

0 for any other final state.

®

This simple example shows how to reduce the problem
from L toL—1. In general, we will refer to the system as z(1)=Q—Q'+1, (10
the pile, or just the system, and the- 1 pile, defined byx
=2,3,...L, will be the subsystem or subpile. In the same
way we will talk about states of the system and about subwhereQ’ refers to theQ value of theL —1 subsystem. In
states when referring to the subsystem. general,Q, will denote theQ value of substats in the L
Although the previous case illustrates the basic idea, there-1 subsystemT(z) will give the probability that a site
appears an extra complication if the height at the origintopples for a given value of [O, p, 1, for z<1, 2, =3
h(1), is largerwhich is that the origin can topple more than respectively, see E@5)]. Therefore, the argument @fis the
once if the avalanche in the—1 subpile is big enough to value ofz(1) calculated after a number of topplings. With all
leave the origin with a too large slope. In this case one catthese definitions the rules turn out to be

0 if AQs—2
[1-T(z+1)]6 if AQ=—1
T(z+DWE [1-T(Q—Qf+1)] if AQ=0

T(z+1) > W PT(Q—Q+ D)W [1-T(Q—-Q))] if AQ=1
J

ngz_l),i)(z,: Hn= (11

T(z+1)> W IT(Q-Q) +1)
J

X2 WIT(Q- QW V[1-T(Q-Qj—1)] if AQ=2.
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The caseAQ=< -2 is impossible since we would need again, and then, one goes frgnto k, from here tol, etc.,
adding more than one grain at1 (and that some of them following all the possible paths that end inwhose origin
would not topplé to reach the corresponding value@fFor  has a probability +T(z¢) to be stable, wither=Qr— Qg
AQ=—1 the only possibility is that the origin does not +1=Q,—Q;{—AQ+1.
topple, therg, increases in one unit and has to be stable, and The previous equations for the elementd®ft) look like
the substate does not change. For the rest of cases we carmatrix product but with different matrices and a different
write number of factors for different components. Nevertheless, in

matrix form they can be written as
wib =T(z+1)>, W IT(Q-Q/+1)
e T J WE e = T(@+ D[ T(Ze)]

X 2 Wik IT(Qi- Qi) "

Qr+1
I1 W(Ll)TQ)W(Ll)} if AQ=0,
Q=Q it

><E| W OT(Q Q1) - - (13)

where the indexXQ is assumed to decrease in the produgi;
X > W DT(Q— Q! —AQ+2) denotes that we take the element of the matrix initfiée
v andf row and 7 is a diagonal matrix whose elements can

W&';‘l){l—T[Ql—Q{—(AQ—l)]} it AQ=0. only be 1, p, or 0, more precisely,

(12 [Tol=T(Q- Q! +1) 5. (14

The general idea is that there is a probabilitfz, + 1) that

the origin topples after the addition of one grain, then, theraVe stress that the rules are valid for any pair of metastable
is a probabilityWi(jL’l) to go to a substatg with this sub-  states, although we will concentrate on states in the attractor.
state there is a probability that the origin topples giverirby These equations fdr=2 vyield

0 0 0 1 0
pq P q 0 0

w@=| P p’ pq q o | (15)
p’q p’ p%q pq q

p3a(l+aq) p*(1+q) p%q(l+q) pqa(l+a) 9°

where states are ordered §82},{11},{21},{12},{22}. Iter-  thatW,; takes a certain valu& is shown forL=7 andp
ating the rules iLt is possible, although laborious, to generate 1o spanning about 16 orders of magnitude. A power law
the 2m|atn|(ces)M : forhsuccesswé;. dAIthough the matrix for ity exponent—1 approximates well this behavior. Curi-
L= ?,? S simp'e, tde correspon I'mgt n(1jatr|ce$a|screases ously, a similar result has been found in networks describing
are getling more and more complicated. correlations between earthquak&8] and the solar coronal

Figure 1 shows, fok =7 and 8, angp=1/2, the probabil- tic fiel ith iff i tin thi
ity densityH (K) of the number of nonzero elements for eachmagne lc field 39] (with a different exponent in this case

file of W, that is, the distribution of the number of states

directly accessible for a state in the attractor, or, in the lan-  \, OBTAINING THE STATIONARY OCCUPATION

guage of networks, the out-degree distribution of the phase DISTRIBUTION

space. There seem to be two kinds of states, one group has

few connections and the other one a large number of them; To get the evolution of the system one has to start with a

nevertheless, the system size is too small to be conclusive. @istribution of initial stated®,, which remember has to be an

contrast, the in-degree distributignot shown in the plgt ~ Na-dimensional vectofsee Eq.(4)], giving the occupation

looks rather uniform(We will always use the letted to  probability of any of theN, states in the attractor. This initial

denote probability densities, although it will correspond todistribution can be a deltffor instance, forL=2, starting

different functions depending on the argumgnt. always with{11}, i.e.,Py=(0,1,0,0,0)] or not. The distribu-
In Fig. 2 we illustrate the enormous variation in the valuestion of states after the firdfslow) time step, i.e., after the

of the transition probabilities: the probability densky(W) addition of just one grain, is obtained Bs=PyW. To ob-
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FIG. 1. (Color Probability density that the number of states directly accessible in phase (spaxé-degree distributiorfor a state in
the attractor takes a value equalkofor L=7 and 8 andp=1/2. ForK not very largeH(K) could be a power law, but larger valueslof
are needed to be more sure. The histogram is calculated with exponentially increasing bins.

tain the distribution of states in the next time step we have tavith each componerid (s) giving the probability that after a

multiply again byW and so on; the powers & give there- long enough time the system is in staeThe evolution of

fore the evolution of the system. the occupation probabilities in the attractor is also obtained
Let us call the vector representing the stationary distribumultiplying the row vectoD by the matrix)V, but asD is

tion D, which of course is also a vector @, dimensions, the stationary distribution, it must be invariant under such

K. I ! | i I ! I ! I ! Lo T I
16 [~ H(D) for
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FIG. 2. (Color) Probability densitieH(W) and H(D) that some transition probability takes a valé and that some state has
stationary occupation probabili (s)=D, for L=7 andp=1/2.
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operation, i.e.D =DW, which simply means thdd is a left ~ ence is that we will have some extra grains: no problem, they

eigenvector of)y with eigenvalue equal to 1. Regularity topple until they leave the pile. Therefore we can write

(which was demonstrated in Sec.)linsures that this eigen- . L(L+1)

vector is unique. (0...0IW=PoWW ' (18)
Moreover, a direct consequence of regularity, which i

also a sufficient condition for it, is that S’VPoz(O ...0,1,0...0). (This expresses something that

we already proved in Sec. Ill, which is that the steepest state
is reachable from any configuration, just adding enough

D grains) Note now that the addition of one extra grain
D changes nothing in each case, this grain will topple until the
) exit, so
M= limW"= , 16
S . ( ) PowL(LJrl):PowL(LJrl)Jrl. (19)
As this equality holds for any vector of the basis, we can
D write
L(L+1)_— L(L+1)+1_
which means that the transition matrix correspondingito WHERD= b= M, (20)

steps has all its files equal to the stationary distribufigpn
asymptotically. Indeed, it is trivial to show that for any dis-
tribution P, with ;P(i)=1, we haveP M=D. On the op- (0...0)W=PoM=D, VPy, (21)
posite side, if any tends toD we can take®=(1,0...0) to
get the first file of matrix\ (by multiplication, which must  which means that, indeed, the transitions from the steepest
be equal td, and the same can be done for any other file ofstate coincide with the stationary occupation distribution.
M. Dhar has also noted that a more restrictive condition holds
If we consider the case=2 we realize thatM=W?3, for the states in the attractor. The state there with less grains
that is, we obtain a matrix whose files are all the same; thigs {11 . .. 1}; the difference in number of grains between the
implies that the asymptotic result is reached in just three timgteepest state and this onelig+ 1)/2, which can replace
steps, sinceV=WM=W?M, etc. But further, it turns out the previous valué (L + 1), for any state in the attractor.

and so, from the first equation we get

that the stationary distributioD, given by the files ofM, is In Fig. 2 we also include the probability density(D)
the last file ofV, if the states are ordered by increasiQg  thatD(s) takes a given value fdr=7 andp=1/2, showing
SO, a behavior very similar to the density of transition probabili-
ties; this is a broad distribution across 13 orders of magni-
D=[p3q(1+q), p*1+q), p’q(l+q), tude, close to a power law with exponentl. This means
that the occupation of the phase spéice., the space of all
pa(l+a), o7; 17) possible configurationsis enormously heterogeneous, at
) N o variance with the BTW moddI34].
that is, the transition probabilities of the steepest stag Figure 3 show®(s) as a function o, where the states

give the occupation probabilities in the stationary regime. Ingre ordered in terms of decreasidgs). In fact, the form of
other Word_s, _the unique ¢|genvectorw with eigenvalue D(s) in this plot is related té4(D), just by identifyings/N
equal to 1 is just its last file. _ as the probability that the occupation probability is larger
We have verified that this result is gene(al for Iarger_ than (or equal t9 a certain value(s), that is, as the survi-
although the necessary number of powers increaseswith yor function of the random variabl®(s). Therefore, the

(note that forL=1 this is already accomplished at the first densityH (D) will be (as usual the derivative of this survi-
time step. Dhar[32] has beautifully demonstrated this result o, function multiplied by—1, or

using the properties of an operator algebra. The idea behind

this is simple: we can realize that it is equivalent to add 1 [dD(s)|*
L(L+1) grains to the flattest staf®0 . . . 0 (which is not H(D)=~— N_( ds )

in the attractorthan to add just one grain to the steepest state A

{22 A a Let us see Why The number of grainS which A power law with — 1 exponent fon-l(D) y|e|ds an expo-

separate both profiles is precisdlyL +1), so, by applica- nentially decreasin@(s), in agreement with the plot.
tion of the Abelian property, we add this number of grains to

{00. 0 and let them topple to rea(_:h the profile COITe- \/ CALCULATION OF THE DISTRIBUTIONS OF MEAN
spondlng_ to the steepest stétee probat_)lhty of this toppling SLOPES AND AVALANCHE SIZES
process is exactly)i after reaching this state we can con-

tinue the toppling process, but we are already in the same From the values of the stationary distribution of the occu-
situation that results from adding just one grain to the steeppation of the states and their transition probabilitiBgs)

est state. So we get the same configurations with the sanandV, it is possible to calculate many things in the station-
probabilities in both cases. In fact this result is not only trueary state(i.e., in the attractgr The first one is théstation-
for the flattest state, but for any other state, the only differ-ary) distribution ofQ, f(Q),

(22
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FIG. 3. (Colon Stationary probability of occupatiod(s) for each state foL =7 and 8, angp=1/2. The states are ordered in decreasing
probability. Straight lines would indicate an exponential decay with

where S is the avalanche sizes the state of the pile, and
f(Q= > D(s)=2 D(s) 9QQ- (23)  p(9is) is the conditional probability of having an avalanche
Vsst.Qg=0Q Vs . . .
of size S starting from a stats. For this term we have

For example, folL=2 we get
PSIS= 2 W= Wydss: (26

f(Q)=[p*1+q), pa(l+p)(1+a), 9], (24 VisiS=s

whereS;; is the size of the avalanche triggered in the tran-

for Q=0,1,2. . o _ sition fromsto j and can be calculated as
The distributionf (Q) is in fact the distribution of heights
at the origin,f(h(1)), and it is also directly related to the L
distribution of mean slopesf(z), with z=3L_,z(x)/L Ssj:gl [hs(x) =h;)I(L=x+1)+L, (27)

=h(1)/L, since Q=h(1)—L=L(z—1). Consequently,
f(Q) defines the active zone width, which can be obtained aghich is essentially the profile difference times the distance
the standard deviation of this distributidiror simplicity, we  to the exit, plus the contribution of the added grain. There-
have used the same symbiofor all the distributions, al- fore we have
though obviously they are not the same function.

Figure 4 displays, for several valueslgfthe distribution f(S)= 2

of the value of Q—(Q))/L¥=[h(1)—(h(1))]/LX=(z vs

—(?))Ll‘x. For x, we take the value proposed in REt6], . . N
¥=0.24. Note how all the discrete distributions collapse un- The corresponding distribution calculated in this manner

der rescaling onto a single continuous curve, which is (:IOS(I,-O.r L=8 andp=1/2 appears in Fig. 5, wherg Itis pompared
to Gaussian, though slightly skewed: it is remarkable tha ith the result obtained from computer simulations. NOtE_}
scaling holds for the smallest system sizes. These exact r&2" €Ven for such a small EVS‘G”‘ there are avalanches with
sults are in total agreement with the findings of computer‘z’mb""b'I'ty smaller than 10°
simulations.

The avalanche size distributidi(S) (in the attractor is VII. DISCUSSION
not difficult to calculate knowindp (s) and}V. We can write

D(s)>, Wg;ds_s- (28)
Vj Sl

To summarize, we have shown that the conditions about
the states put forward in Ref31] are necessary and suffi-
f(3)=2 p(S/s)D(s), (25) cient_to d_efine the att_r:_;lctor_ of the Os_lo _model, which more-

Vs over is unique. In addition, its nonperiodical character allows
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FIG. 4. (Colon Stationary distribution o6 [or of heights at the tof)(1)], centered by the mean and scaled 8y System size ranges
fromL=1 toL=8, andp=1/2. Notice how all the discrete distributions for each system size conspire to give a smooth curve, which is
close to Gaussian, although slightly skewed.

the existence of a single occupation distribution in the stacolumn and anL—1 subsystem and by using an iterative
tionary limit. The Abelian property enables the calculation oftoppling procedure; this allows to explore the network of
the transition probabilities between the different states, justonnections in phase spa¢ievertheless, an in-depth inves-
from the decomposition of a system of sizénto its leftmost  tigation from the point of view of complex networks would

1 — —r
A& X &

X

i * X KK Kokopop

1075 =

[ simulations for L
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Il
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Il

—

10—20 -_ % _-
[ % ]
X ]
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FIG. 5. (Color) Stationary distribution of avalanche sizes for 8 andp= 1/2 from our exact procedure and from simulations of the Oslo
model.
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be very illuminating, for surg40].) Unexpectedly, the sta- possible just with computer simulations even for such small
tionary occupation distribution turns out to be the last file ofsizes. But the enormous number of states in the attractor
the transition matrix, i.e., that corresponding to the transi{which increases as 2. makes impossible any calculation
tions of the steepest state. Both the transitions between statbg hand beyond the smallest valued.ofSymbolic computer
and their occupations can take values in an extremely largealculations, performed byAPLE or similar programs, have
range of probabilities, setting a clear difference with otheralso severe limitations of size, and even with numeric com-
SOC systems. These calculations are exact for the systeputations the system size is limited to abdut 10 (for L
sizes involved, and could be performed for dnyin prin- =10 there are more than 4®@ecurrent states, which would
ciple. In practice, we have strong limitations, as is explainedequire 18 matrix elements Also, the number of different
below. Finally, with these quantities we can also derive thematrix products gets very large with Although the results
form of the fluctuations of the profile and the avalanche sizave obtain for small systems are interesting enough and rep-
distribution, for the corresponding value bf resentative of the complexity of the model, it would be nice

In fact, the knowledge of the transition probability matrix to have access to supercomputers to increase the capabilities
and the stationary distribution allows the calculation of anyto manage larger system sizes.
property related to the profile of the pile, as the ones we have To conclude, it is interesting to point out that having exact
just mentioned or the dissipated-energy distribution, theanalytical results for some problem is not synonymous with
trapping-time distributionapproximately, and the damage understanding; in this case we can obtain exact expressions
spreading. But there are other properties that do not onlyor the transition probabilities, the stationary distribution, or
depend on the profile but also on the dynamics which leadthe avalanche size distribution, but from these formulas still
from one profile to another, for instance, the avalanche duit is not clear which are the properties of the system for large
ration: knowing the profiles is not enough to calculate thisL. For instance, for the avalanche size distribution we can get
quantity; in fact, with the same initial and final states thevery complicated exact equations, but we cannot show that
duration is not uniquely defined, i.e., there are many ways tehey tend to a power law in the asymptotic limit. In any case,
end in the same state with a different number of avalanch& my opinion, the results in this paper imply a remarkable
time steps, depending on the actual sequence of topplingprogress in our picture of complex systems. Of course, the
So, despite the usefulness of the Abelian property, it does n@xact scheme presented here is amenable to application to
allow to calculate dynamical magnitudes. This could beextensions or variations of the Oslo model, and to other one-
solved, in principle, with a parallel calculation stating the dimensional systems with boundary driving.
probability that a given transition would involve a given
time; nevertheless, it would be rather complicated.

Also, the profiles, _that is, the confl_guratlons defm_ed in ACKNOWLEDGMENTS
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ability distributions. The fact that for a small system of sizethanks to the organizers of the Symposi@amplexity and
L=8 there are occupation probabilities in the attractorCriticality, held in Copenhagen in memory of Per Bak. Fi-
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indicates that the results we achieve would not have beeRama y Cajal program.
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