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Calculation of the transition matrix and of the occupation probabilities for the states
of the Oslo sandpile model

Álvaro Corral*
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The Oslo sandpile model, or if one wants to be precise, ricepile model, is a cellular automaton designed to
model experiments on granular piles displaying self-organized criticality. We present an analytic treatment that
allows the calculation of the transition probabilities between the different configurations of the system; from
here, using the theory of Markov chains, we can obtain the stationary occupation distribution, which tells us
that the phase space is occupied with probabilities that vary in many orders of magnitude from one state to
another. Our results show how the complexity of this simple model is built as the number of elements
increases, and allow, for small system sizes, the exact calculation of the avalanche-size distribution and other
properties related to the profile of the pile.
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I. INTRODUCTION AND DEFINITION OF THE OSLO
MODEL

Self-organized criticality~SOC!, born from the deep in-
sights of Baket al., deals with the emergence of scale inva
ance in slowly driven nonequilibrium systems@1,2#. The
phenomenon is illustrated with the archetypical example o
pile of sand, and realized in computer simulations of dive
sandpile models, which are mainly based on the origi
Bak-Tang-Wiesenfeld~BTW! model@3,4#. However, the rel-
evance of SOC for real granular matter was unclear u
Frette et al. @5# performed experiments on
111-dimensional pile of rice; these experiments and so
others@6–8# were modeled with a cellular automaton intr
duced in Ref.@6#, later called the Oslo model.

The Oslo model has the interest of being~as far as I
know! the first SOC sandpile model or, more appropriate
ricepile model, able to reproduce experimental results.
the avalanche properties@5#, the concordance with exper
ments is only qualitative, whereas for the transport of in
vidual grains @6#, and for the surface roughness@7#, the
agreement is also quantitative. Moreover, the Oslo mode
remarkable as a simple model of SOC, because it disp
this nontrivial behavior in one dimension.

The model is designed to mimic the experimental sit
tion in Refs.@5–7#: grains are slowly added at a fixed pos
tion on a quasi-one-dimensional substrate which is in
tween two parallel vertical plates; just at the~let us say! left
of the position of addition a wall prevents the falling of th
grains; on the other side, the right boundary is open. T
model assumes a discrete space,x51,2, . . . ,L, from left to
right, as well as discrete time and field~the height of the pile,
or number of grains!. The grains pile up in columns until th
local slope somewhere is too large, then the upper grain
comes unstable and is transferred to the next column to
right ~from x to x11). This transfer can induce further in
stabilities and therefore a chain reaction or avalanche
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slow-driving condition imposes that during the avalanch
the external addition of grains is interrupted; this implies th
the evolution of the model~and of the experiments! takes
place in two separate time scales: a slow time scale for
grain addition and a fast time scale for the evolution of t
avalanches.

In terms of the height of thex column,h(x), and the local
slope, defined asz(x)[h(x)2h(x11), taking h(L11)
[0, these prescriptions are expressed in the following ru
@6#:

if z~x!< zth~x!;x⇒h~1!→h~1!11,

if z~x!.zth~x!⇒H h~x!→h~x!21

h~x11!→h~x11!11

zth~x!→nrand

~1!

~where the update is supposed to take place in parallel!. Here
zth(x) refers to a local threshold, which rather than bei
constant changes with every toppling atx to a random value
nrand , chosen as

nrand5H 1 with probability p

2 with probability q512p.
~2!

These simple rules, Eqs.~1! and ~2!, together with the
boundary condition,h(L11)[0, completely define the
Oslo model. Nevertheless, it is convenient to express rule~1!
in terms only of the slope, turning out to be

if z~x!<zth~x!;x⇒z~1!→z~1!11,

if z~x!.zth~x!⇒5
z~x!→z~x!22

z~x21!→z~x21!11

z~x11!→z~x11!11

zth~x!→nrand

~3!

for x51,2, . . . ,L21, and
©2004 The American Physical Society07-1
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ÁLVARO CORRAL PHYSICAL REVIEW E69, 026107 ~2004!
if z~L !.zth~L !⇒H z~L !→z~L !21

z~L21!→z~L21!11

zth~L !→nrand

~taking into account that atx50 the z variable is not de-
fined!. Notice how the dynamics of the grains has allowed
define a different dynamics for the units of slope, which c
be considered as some kind of virtual particles. Both dyna
ics are conservative, except at the boundaries, which c
ously are reversed: the open end for the grains atx5L is a
closed boundary for the slopes and vice versa atx51. It is
important to have this in mind to avoid confusion.

The Oslo model is essentially the one-dimensional BT
model, but with fixed addition atx51 and an open boundar
condition for the grains atx5L. The key different ingredi-
ent, which makes the model critical in one dimension, is
selection of dynamically changing thresholds, to account
the heterogeneities of a real system. In this way, whereas
randomness in the BTW sandpile is external, in the O
model it is internal, as in real ricepile experiments. This sp
is original from the philosophy of Ref.@9#, although the
model there is much more complicated.

Even with the simplicity of its definition, Eqs.~1! and~2!,
the Oslo model gives rise to an astonishing complex beh
ior. As is usual in SOC systems, it shows a power-law d
tribution of avalanche sizes@6,10# and avalanche duration
@10#, signaling the existence of no characteristic scales
the avalanche process. But also it has been shown tha
transport of the grains through the pile is anomalous, in
sense that there is no normal diffusion but a power-law d
tributed transit time@6#, spanning many orders of magnitud
~just as it happens in the experiments, as we have m
tioned!. This has been explained by the fact that the time t
a grain is trapped at a given position is also broadly dist
uted @11,12#, which has in its turn been related to a kind
skewed fractional Brownian motion for the variations of t
height, in the antipersistent case@13#. Moreover, the dis-
tances traveled by the grains during an avalanche turn o
be Lévy flights @11,12#, i.e., again scale-free, despite th
nearest-neighbor rules. Additionally, the time fluctuations
the profile scale with a roughness exponent that is in g
concordance with the experiments@6,7#. In fact, the expo-
nents of all previous magnitudes can be related by sev
scaling laws.

Further, the time sequence of the transit times show
clear multifractal spectrum@14#, whereas the time sequenc
of the mean slope displays 1/f noise@15#, in contrast to the
BTW model @2#. The model also allows one to study th
transition from intermittent behavior to continuous flow, ju
increasing the driving rate and breaking the time-scale se
ration @16#. Very recently it has been shown that a sm
damage performed in the system does not spread, and t
fore the sensitivity of the model to the initial conditions
quite different to that of chaotic systems and to what w
expected from systems ‘‘at the edge of chaos’’@17#. On the
other hand, there exists an exact mapping between
model an a model of interface depinning, which establis
the existence of a wide universality class for these none
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librium systems related to the quenched Edwards-Wilkins
equation@18–21#. In a previous paper, I have also signal
the similarities between the Oslo model and the recurrenc
real earthquakes@22#. Also, variations and extensions of th
basic idea have been considered@23–29#. Because of its
simple definition and rich phenomenology related to expe
mentally observable quantities, we can consider the O
model as the analog of the Ising model for slowly driv
complex systems@30#.

In spite of these fascinating properties, our understand
of the Oslo model comes mainly from computer simulatio
and some scaling arguments; no analytical solution exist
seems possible in the near future~as is the general case fo
nonequilibrium systems!. Hence, the exact enumeration
the number of states in the attractor for this model, p
formed by Chua and Christensen, is very remarkable@31#.
They found that this number increases exponentially w
system size as

NA5
aGL1a21G2L

A5
, ~4!

with G the golden mean,G5(31A5)/2.2.6, anda5(1
1A5)/2.1.6.

In this paper, we are going to derive exact expressions
the transition probabilities between states in the Oslo mo
using the results for a system of sizeL21 we will get these
probabilities in a system of sizeL. The increase in just one
unit of the size of the system leads to an enormous incre
in the complexity of the resulting equations; we have a k
of machine for building complexity. With the transition prob
abilities it is possible to obtain the stationary occupation d
tribution, which is the probability with which a state is vis
ited in the asymptotic regime. We will get that, in contrast
other SOC models, the states in the attractor are not equ
likely; rather, the range of occupation probabilities vari
dramatically in many orders of magnitude. Once the stati
ary occupation distribution is known, several other quan
ties, directly related with the profile of the pile, as the mea
slope distribution and the avalanche-size distribution, can
obtained.~I have very recently become aware that Dhar h
undertaken an analysis of precisely the same problem@32#;
nevertheless, his approach is entirely different from ours
both works can be considered as complementary to e
other.!

II. SOME PROPERTIES OF THE MODEL

Two types of states, or configurations, are possible in
system: unstable states, with at least one local slope v
above its local threshold,z(x).zth(x), and metastable
states, where all the slopes are below threshold,z(x)
<zth(x);x. Unstable states evolve by means of avalanc
towards metastable states, but the addition of a new grain
make metastable configurations become unstable again,
so on.

We are only interested on metastable states. If we ass
that the initial slopesz(x) are not negative@33#, the possible
stable values for this variable are 0, 1, and 2~values>3 are
7-2
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CALCULATION OF THE TRANSITION MATRIX AND OF . . . PHYSICAL REVIEW E 69, 026107 ~2004!
always unstable!; therefore, in a system of sizeL a meta-
stable configuration will be fully specified by anL vector
whose components are the slope values 0, 1, or 2. Fo
stance, we can consider a states to bes5$210 . . . 1% which
meansz(1)52, z(2)51, z(3)50, and so on up toz(L)
51 ~alternatively, the metastable states can be viewed as an
integer withL digits expressed in base 3!. Notice that we do
not need to keep track of the thresholdszth(x); this is so
because the dynamics can be described in an alternative
equivalent way, using the following rule:

if z~x!has just
changed its value toH 1 or less, no toppling

2, toppling with probability p

3 or greater, toppling.
~5!

We stress that this rule has to be applied only when the si
x has received one~or more! units of slope or has toppled i
the previous avalanche~fast! time step.~This works because
we have only defined two possible values for the thresh
with three values the situation would be more delicate.!

A very useful property in order to study the evolution
the system will be the Abelian symmetry, first considered
sandpile models by Dhar@34#. It states that the order in
which units of slope are added and sites over thresh
topple does not matter for the final configuration of the p
therefore, we will be allowed to topple the sites in the m
convenient sequence to keep the process manageable i
calculations. The demonstration of this property in our c
is similar to that in Refs.@34–36# but takes into account tha
we have evolving thresholds. If we consider two sitesx and
y that are unstable it is easy to see that we get the same
no matter which one topples first, since after the toppling
x, site y will still remain unstable, and the quantity that an
toppling site is reset and the quantity transferred to
neighbors will be the same, independently of the order. T
same reasoning can be extended to more than two o
threshold sites. But this is so only if the random thresho
for sitesx andy are equally chosen in each possible seque
of topplings, that is, we need a predefined sequence
thresholds at each site, or, from a computational point
view, instead of having a single random number generato
different generator must be used for each site. From a sim
reasoning as before, the addition of grains~or slope! at x
51 commutes with the toppling of any unstable site.

On the other hand, the evolution of the pile can be
scribed by means of a finite Markov chain; indeed, the pr
ability that a given state transforms into another state
pends only on the two states, and not on the previous his
thanks to rule~5!. In particular, the probability that a meta
stable statei evolves to a new metastable statej after the
addition of one grain and at the end of the correspond
avalanche is independent of the previous states of the
and can be obtained by means of the unstable states
separate the statesi and j. These probabilities constitute
matrix that will be referred to asW, with elementsWi j .
Probability theory imposes thatWi j >0 and that the files of
the matrix are normalized to 1~in the probabilistic sense!,
i.e., ( jWi j 51. A matrix with these properties constitutes
02610
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stochastic matrix.~Further, asW is constant through the time
evolution, we are dealing with a homogeneous Mark
chain.!

III. CHARACTERIZATION OF THE ATTRACTOR AND
EXISTENCE OF A UNIQUE STATIONARY

DISTRIBUTION

Some results from the theory of Markov chains can
applied at this point. To get the stationary properties of
pile it will be crucial to have a well defined stationary occ
pation distribution; this quantity gives the probability wit
which every state is visited in the asymptotic regime, that
in the attractor, and it is represented by a vector where e
component corresponds to a configuration of the system.
stationary occupation distribution is simply referred to as
stationary distribution in Markov-chain theory, but here w
are interested in many other probability distributions in t
stationary case, as for instance that for the avalanche s
~Another common name is ergodic distribution.!

For completeness, let us explain that the attractor can
defined as the set of recurrent, or persistent states, thes
ing the states for which the return probability is exactly
More precisely, if a state is visited at some time, there i
probability 1 that it will be visited again in the future. I
contrast, for transient states this probability is smaller than
or even zero.

At this point it is convenient to use graph theory to re
resent a Markov chain: the transition probability matrixW
defines a graph where nodesi and j are directly connected if
Wi j Þ0, otherwise, there is no direct link betweeni and j;
that is, we have the graph of the possible transitions in
~slow! time step.

The existence of a unique stationary occupation distri
tion, independent of the initial conditions, is guaranteed
the graph associated with the matrixW has only one nonpe
riodic final class@37# ~this is also a necessary condition!. A
final class is a strongly connected component whose
ments have no transitions to elements outside the clas
strongly connected component is a part of the graph in wh
any pair of nodes, or states, can be connected in both d
tions; in other words,i andf stay in a circuit and it is possible
to reach statef starting fromi and vice versa. A final class
represents then nothing else than an attractor in which
system can settle after a transient period. The periodicity
strongly connected component is the greatest common d
sor of the length of their circuits; if this number is 1 th
graph is nonperiodic. This is, for instance, the case in
presence of loops~circuits with just one element, that is
Wii Þ0, for somei ).

Let us see which states of the pile constitute the attrac
or final class. We have found it simpler to consider the co
nections between two states by means of the steepest m
stable state, which is$22 . . . 2% @i.e., the one withz(x)
52;x], and then show which states lead to the steepest s
and which ones result from it.

In fact, all states can lead to the steepest state. To s
this, we add grains and let the sites topple depending on t
local thresholds, but after every toppling we assume that
7-3
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maximum thresholdzth(x)52 is always selected; then, w
are essentially in the same situation as in the o
dimensional BTW model: every column in the pile grows
reach the steepest profile. In this way, adding enough gr
we will end in the steepest state. This is more easily s
applying the Abelian symmetry: we first add grains to bu
the first column, until it reaches the desired height,h(1)
52L, then we add more grains and let them topple to
second column until it reachesh(2)52(L21), and so on.

This is enough to ensure that there is only one final cla
although the only thing we know about it is that it includ
the steepest state. If we continue with the characterizatio
the final class we will simply get the attractor studied in R
@31#.

Contrary to the previous situation, not every state
reachable from the steepest state. Consider first final s
without zeros, i.e.,zf(x)51 or 2, only;x. One way to get
these states is the following: after the addition of the fi
grain, which crosses the whole pile arriving to the exit,
fix the thresholds to the slopes of the desired final confi
ration, zth(x)5zf(x) ;x. Then, we apply the Abelian prop
erty and start the toppling process of the remaining gra
from the rightmost sitex5L, emptying out this column
@from z(L)52 to z(L)5zf(L)]; after this, we take the nex
column to the left,L21, and let every extra grain toppl
until it leaves the pile. Repeating the same procedure we
in the desired state~which is therefore reachable after ju
one avalanche!. Basically, we are in a one-dimension
BTW-like situation again, where the pile tends to a st
z(x)5zth(x).

When there are zeros in the configuration,z(x)50 for
somex, we cannot apply this trick since thresholds are d
fined as larger than zero. In fact, Chua and Christensen@31#
have noticed that these states do not necessarily belong t
attractor: they argue that zeros have to be compensate
twos@i.e., sites with slopez(x)52]; to be precise, they show
that a necessary condition to belong to the attractor is tha
each zero-slope site in the configuration there must be
least one two-slope site to the right, before the next zero
before the exit.

Let us see that Chua and Christensen’s condition is
sufficient to belong to the attractor: starting from the steep
state, the first zero appears when~after a number of top-
plings! a site with z(x)52 topples@if zth(x)51] and the
following site hasz(x11)51. Application of the rules gives
thenz(x)50 andz(x11)52; if zth(x11)52 this site does
not topple and the configuration can be metastable. Now
a zero exists, the same process can be repeated but wit
zero-slope site receiving a grain; that is, we can havez(x
21)52 andz(x)50, if zth(x21)51 we getz(x21)50,
z(x)51, andz(x11)52; this means that the zero can mo
to the left, but is somehow associated with the existence
site with slope 2, and this slope 2 cannot disappear if the z
exists. In order to topple, sitex11 would need the addition
of one grain, but grains come from the left and cannot re
x11 except if the zero is removed, i.e., any grain com
from the left would encounter the zero slope and by the ru
of the model would stick there.

In general, to get a configuration$ . . . 01 . . . 12 . . .%
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from the steepest state we go first to the configurat
$ . . . 11 . . . 11 . . .% ~the same but replacing the 0 and 2 b
two 1’s! with the thresholds equaling the slopes. So, any n
added grain will travel the whole pile up to the exit. Afte
this, for the site that has to have slope 2 we make its thre
old 2; an additional incoming grain will make the slope
this site equal to 2 and that of the preceding site equa
zero; successive incoming grains will move the position
the zero to the desired site. When there are more zero-
pairs in the final configuration the generalization is straig
forward if we start the previous procedure from the right.

This demonstrates that the condition that each zero m
have a two to the right is a sufficient condition to belong
the attractor. But further, the previous reasoning shows
states violating this condition are not accessible from
steepest state, or from any other state which verifies the c
dition. So, the condition is necessary and sufficient, and
attractor proposed by Chua and Christensen constitutes
only final class of the system.

Finally, it is easy to show the existence of loops in t
final class: any state without zeros can return to the sa
state after the addition of one grain if this grain trave
through the whole pile and does not induce any other grai
topple. For this we need that sites with slope 1 have a
thresholds equal to 1 and sites with slope 2 keep their thre
olds equal to 2 after toppling.@The probability of this is
pnqL2n, wheren is the number of sites withz(x)51.# This
ensures the nonperiodicity of the graph and completes
demonstration of the existence of a unique stationary dis
bution of state occupation. In a case like this, the Mark
chain is said to be regular.

Now that we know that there exists a stationary distrib
tion, how do we obtain it? Notice that all that we have a
ready learnt about the system has been accomplished wit
explicit knowledge of the transition probabilitiesW; the rel-
evant issue was if the transition was possible,Wi j Þ0, or not.
However, to calculate the stationary distribution and proce
further we need the calculation of the matrix elements.

IV. CALCULATION OF THE TRANSITION
PROBABILITIES

It is possible to derive the transition probabilities betwe
the metastable states in a pile of sizeL as a function of the
transition probabilities for a sizeL21. Since we have fully
characterized the attractor@31#, we restrict the calculation
only to these states, for the sake of conciseness. Note
although the number of states in the attractor@Eq. ~4!# be-
comes astronomically large for the usual values ofL in the
simulations, it constitutes a drastic reduction in front of t
number of metastable states, which is 3L; i.e.,

NA;2.6L!3L, ~6!

for L large.
Starting fromL51 there are only two possible states

the attractor,$1% and$2% ~state$0% is clearly transient since
the coordinatex51 corresponds already to the bounda
where the toppling rules for the slope are special!. We will
7-4
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CALCULATION OF THE TRANSITION MATRIX AND OF . . . PHYSICAL REVIEW E 69, 026107 ~2004!
label these two states as 1 and 2~in this case the label is
straightforward, but not for largerL). Applying the rules of
the model we easily get

W (1)5S p q

p qD , ~7!

where the superindex~1! stresses that we are dealing with
system of sizeL51.

We can now considerL52 and look at the different state
there, for instance,$11%. What happens when we add a gra
at x51? There is a probabilityp that the origin topples, if
not, we end in a state$21% with a probabilityq. If the origin
topples, the grain jumps to positionx52 and there the prob
lem reduces to anL51 problem, for which we know the
transition probabilities. In this case, we have to apply
transitions of state 1~which remember are defined takin
into account that one grain is added to this state at its l
most position,x52 now!; as these transition probabilitie
areW11

(1) andW12
(1) , we have for the state$11% the probabili-

ties

W$11%$z(1)z(2)%
(2) 55

q to go to state$z~1!z~2!%5$21%

pW11
(1)5p2 to return to $11%

pW12
(1)5pq to go to $02%

0 for any other final state.

~8!

This simple example shows how to reduce the probl
from L to L21. In general, we will refer to theL system as
the pile, or just the system, and theL21 pile, defined byx
52,3, . . . ,L, will be the subsystem or subpile. In the sam
way we will talk about states of the system and about s
states when referring to the subsystem.

Although the previous case illustrates the basic idea, th
appears an extra complication if the height at the orig
h(1), is larger,which is that the origin can topple more tha
once if the avalanche in theL21 subpile is big enough to
leave the origin with a too large slope. In this case one
e

t-

-

re
,

n

apply the Abelian property: let us topple first the subpile~just
using the transition probabilitiesW (L21) that we know! and
then, at the end, let the origin topple. Of course, this giv
rise to an iterative process, where the procedure has to
applied as many times as the origin topples, which ishI(1)
2hF(1)11, I andF referring to the initial and final states
The sequence is: first the origin topples, then, theL21 sub-
pile to reach equilibrium, then the origin again~if needed!,
then the subpile, and so on.

Applying the previous argument to a general system
sizeL one can find the rules for the transition probabilities
is convenient to define a variableQ as

Q[h~1!2L5 (
x51

L

z~x!2L; ~9!

we haveQ50,1, . . . ,L in the attractor@31#. The equations
for the elements ofW (L) will depend onDQ5QI2QF , that
is, the difference ofQ between the initial state and the fin
state~defined here in the opposite way as usual!; this is so
because the number of topplings atx51 is DQ11. The
rules are given below and refer to the transition probabilit
between an initial stateI with a value ofz(1)5zI and L
21 subpile statei and a final stateF with z(1)5zF and
substatef, that is, a transition (zI ,i )→(zF , f ). Note how an
L state is completely characterized by the value ofz(1) and
the state~substate! of the L21 subsystem. As with every
toppling of the originQ decreases in one unit, we will us
the following relation to calculatez(1):

z~1!5Q2Q811, ~10!

whereQ8 refers to theQ value of theL21 subsystem. In
general,Qs8 will denote theQ value of substates in the L
21 subsystem.T(z) will give the probability that a site
topples for a given value ofz @0, p, 1, for z<1, 2, >3
respectively, see Eq.~5!#. Therefore, the argument ofT is the
value ofz(1) calculated after a number of topplings. With a
these definitions the rules turn out to be
W(zI ,i )(zF , f )
(L) 5

¦

0 if DQ<22

@12T~zI11!#d i f if DQ521

T~zI11!Wi f
(L21)@12T~QI2Qf811!# if DQ50

T~zI11!(
j

Wi j
(L21)T~QI2Qj811!Wj f

(L21)@12T~QI2Qf8!# if DQ51

T~zI11!(
j

Wi j
(L21)T~QI2Qj811!

3(
k

Wjk
(L21)T~QI2Qk8!Wk f

(L21)@12T~QI2Qf821!# if DQ52.

~11!

026107-5
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The caseDQ<22 is impossible since we would nee
adding more than one grain atx51 ~and that some of them
would not topple! to reach the corresponding value ofQ. For
DQ521 the only possibility is that the origin does n
topple, thenzI increases in one unit and has to be stable,
the substate does not change. For the rest of cases we
write

W(zI ,i )(zF , f )
(L) 5T~zI11!(

j
Wi j

(L21)T~QI2Qj811!

3(
k

Wjk
(L21)T~QI2Qk8!

3(
l

Wkl
(L21)T~QI2Ql821!•••

3(
v

Wuv
(L21)T~QI2Qv82DQ12!

Wv f
(L21)$12T@QI2Qf82~DQ21!#% if DQ>0.

~12!

The general idea is that there is a probabilityT(zI11) that
the origin topples after the addition of one grain, then, th
is a probabilityWi j

(L21) to go to a substatej; with this sub-
state there is a probability that the origin topples given bT
ra

ch
es
an
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h

em
e.

to

e
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again, and then, one goes fromj to k, from here tol, etc.,
following all the possible paths that end inf, whose origin
has a probability 12T(zF) to be stable, withzF5QF2Qf8
115QI2Qf82DQ11.

The previous equations for the elements ofW (L) look like
a matrix product but with different matrices and a differe
number of factors for different components. Nevertheless
matrix form they can be written as

W(zI ,i )(zF , f )
(L) 5T~zI11!@12T~zF!#

3F S )
Q5QI

QF11

W (L21)TQDW (L21)G
i f

if DQ>0,

~13!

where the indexQ is assumed to decrease in the product,@ # i f
denotes that we take the element of the matrix in thei file
and f row andT is a diagonal matrix whose elements c
only be 1, p, or 0, more precisely,

@TQ# jk5T~Q2Qj811!d jk . ~14!

We stress that the rules are valid for any pair of metasta
states, although we will concentrate on states in the attra

These equations forL52 yield
W (2)5S 0 0 0 1 0

pq p2 q 0 0

p2q p3 pq q 0

p3q p4 p2q pq q

p3q~11q! p4~11q! p2q~11q! pq~11q! q2

D , ~15!
aw
i-
ing
l

h a
n

l

where states are ordered as$02%,$11%,$21%,$12%,$22%. Iter-
ating the rules it is possible, although laborious, to gene
the matricesW (L) for successiveL. Although the matrix for
L52 looks simple, the corresponding matrices asL increases
are getting more and more complicated.

Figure 1 shows, forL57 and 8, andp51/2, the probabil-
ity densityH(K) of the number of nonzero elements for ea
file of W, that is, the distribution of the number of stat
directly accessible for a state in the attractor, or, in the l
guage of networks, the out-degree distribution of the ph
space. There seem to be two kinds of states, one group
few connections and the other one a large number of th
nevertheless, the system size is too small to be conclusiv
contrast, the in-degree distribution~not shown in the plot!
looks rather uniform.~We will always use the letterH to
denote probability densities, although it will correspond
different functions depending on the argument.!

In Fig. 2 we illustrate the enormous variation in the valu
of the transition probabilities: the probability densityH(W)
te

-
e
as
;

In

s

that Wi j takes a certain valueW is shown forL57 and p
51/2, spanning about 16 orders of magnitude. A power l
with exponent21 approximates well this behavior. Cur
ously, a similar result has been found in networks describ
correlations between earthquakes@38# and the solar corona
magnetic field@39# ~with a different exponent in this case!.

V. OBTAINING THE STATIONARY OCCUPATION
DISTRIBUTION

To get the evolution of the system one has to start wit
distribution of initial statesP0, which remember has to be a
NA-dimensional vector@see Eq.~4!#, giving the occupation
probability of any of theNA states in the attractor. This initia
distribution can be a delta@for instance, forL52, starting
always with$11%, i.e., P05(0,1,0,0,0)] or not. The distribu-
tion of states after the first~slow! time step, i.e., after the
addition of just one grain, is obtained asP15P0W. To ob-
7-6
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FIG. 1. ~Color! Probability density that the number of states directly accessible in phase space~or out-degree distribution! for a state in
the attractor takes a value equal toK, for L57 and 8 andp51/2. ForK not very large,H(K) could be a power law, but larger values ofL
are needed to be more sure. The histogram is calculated with exponentially increasing bins.
t

bu
ed

ch
tain the distribution of states in the next time step we have
multiply again byW and so on; the powers ofW give there-
fore the evolution of the system.

Let us call the vector representing the stationary distri
tion D, which of course is also a vector onNA dimensions,
02610
o

-

with each componentD(s) giving the probability that after a
long enough time the system is in states. The evolution of
the occupation probabilities in the attractor is also obtain
multiplying the row vectorD by the matrixW, but asD is
the stationary distribution, it must be invariant under su
FIG. 2. ~Color! Probability densitiesH(W) and H(D) that some transition probability takes a valueW, and that some states has
stationary occupation probabilityD(s)5D, for L57 andp51/2.
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operation, i.e.,D5DW, which simply means thatD is a left
eigenvector ofW with eigenvalue equal to 1. Regularit
~which was demonstrated in Sec. III! ensures that this eigen
vector is unique.

Moreover, a direct consequence of regularity, which
also a sufficient condition for it, is that

M[ lim
n→`

W n5S D

D

•

•

•

D

D , ~16!

which means that the transition matrix corresponding ton
steps has all its files equal to the stationary distributionD,
asymptotically. Indeed, it is trivial to show that for any di
tribution P, with ( i P( i )51, we havePM5D. On the op-
posite side, if anyP tends toD we can takeP5(1,0 . . . 0) to
get the first file of matrixM ~by multiplication!, which must
be equal toD, and the same can be done for any other file
M.

If we consider the caseL52 we realize thatM5W 3,
that is, we obtain a matrix whose files are all the same;
implies that the asymptotic result is reached in just three t
steps, sinceM5WM5W 2M, etc. But further, it turns out
that the stationary distributionD, given by the files ofM, is
the last file ofW, if the states are ordered by increasingQ,
so,

D5@p3q~11q!, p4~11q!, p2q~11q!,

pq~11q!, q2#; ~17!

that is, the transition probabilities of the steepest state$22%
give the occupation probabilities in the stationary regime
other words, the unique eigenvector ofW with eigenvalue
equal to 1 is just its last file.

We have verified that this result is general for largerL,
although the necessary number of powers increases wiL
~note that forL51 this is already accomplished at the fir
time step!. Dhar@32# has beautifully demonstrated this resu
using the properties of an operator algebra. The idea be
this is simple: we can realize that it is equivalent to a
L(L11) grains to the flattest state$00 . . . 0% ~which is not
in the attractor! than to add just one grain to the steepest s
$22 . . . 2%. Let us see why. The number of grains whi
separate both profiles is preciselyL(L11), so, by applica-
tion of the Abelian property, we add this number of grains
$00 . . . 0% and let them topple to reach the profile corr
sponding to the steepest state~the probability of this toppling
process is exactly 1!; after reaching this state we can co
tinue the toppling process, but we are already in the sa
situation that results from adding just one grain to the ste
est state. So we get the same configurations with the s
probabilities in both cases. In fact this result is not only tr
for the flattest state, but for any other state, the only diff
02610
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ence is that we will have some extra grains: no problem, t
topple until they leave the pile. Therefore we can write

~0 . . . 0,1!W5P0W L(L11), ~18!

;P05(0 . . . 0,1,0. . . 0). ~This expresses something th
we already proved in Sec. III, which is that the steepest s
is reachable from any configuration, just adding enou
grains.! Note now that the addition of one extra gra
changes nothing in each case, this grain will topple until
exit, so

P0W L(L11)5P0W L(L11)11. ~19!

As this equality holds for any vector of the basis, we c
write

W L(L11)5W L(L11)115M, ~20!

and so, from the first equation we get

~0 . . . 0,1!W5P0M5D, ;P0 , ~21!

which means that, indeed, the transitions from the stee
state coincide with the stationary occupation distributio
Dhar has also noted that a more restrictive condition ho
for the states in the attractor. The state there with less gr
is $11 . . . 1%; the difference in number of grains between t
steepest state and this one isL(L11)/2, which can replace
the previous valueL(L11), for any state in the attractor.

In Fig. 2 we also include the probability densityH(D)
thatD(s) takes a given value forL57 andp51/2, showing
a behavior very similar to the density of transition probab
ties; this is a broad distribution across 13 orders of mag
tude, close to a power law with exponent21. This means
that the occupation of the phase space~i.e., the space of all
possible configurations! is enormously heterogeneous,
variance with the BTW model@34#.

Figure 3 showsD(s) as a function ofs, where the statess
are ordered in terms of decreasingD(s). In fact, the form of
D(s) in this plot is related toH(D), just by identifyings/NA
as the probability that the occupation probability is larg
than~or equal to! a certain valueD(s), that is, as the survi-
vor function of the random variableD(s). Therefore, the
densityH(D) will be ~as usual! the derivative of this survi-
vor function, multiplied by21, or

H~D !52
1

NA
S dD~s!

ds D 21

. ~22!

A power law with 21 exponent forH(D) yields an expo-
nentially decreasingD(s), in agreement with the plot.

VI. CALCULATION OF THE DISTRIBUTIONS OF MEAN
SLOPES AND AVALANCHE SIZES

From the values of the stationary distribution of the occ
pation of the states and their transition probabilities,D(s)
andW, it is possible to calculate many things in the statio
ary state,~i.e., in the attractor!. The first one is the~station-
ary! distribution ofQ, f (Q),
7-8
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FIG. 3. ~Color! Stationary probability of occupationD(s) for each state forL57 and 8, andp51/2. The states are ordered in decreas
probability. Straight lines would indicate an exponential decay withs.
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f ~Q!5 (
;ss.t.Qs5Q

D~s!5(
;s

D~s!dQsQ
. ~23!

For example, forL52 we get

f ~Q!5@p3~11q!, pq~11p!~11q!, q2#, ~24!

for Q50,1,2.
The distributionf (Q) is in fact the distribution of heights

at the origin, f „h(1)…, and it is also directly related to th
distribution of mean slopes,f ( z̄), with z̄[(x51

L z(x)/L

5h(1)/L, since Q5h(1)2L5L( z̄21). Consequently,
f (Q) defines the active zone width, which can be obtained
the standard deviation of this distribution.~For simplicity, we
have used the same symbolf for all the distributions, al-
though obviously they are not the same function.!

Figure 4 displays, for several values ofL, the distribution
of the value of (Q2^Q&)/Lx5@h(1)2^h(1)&#/Lx5( z̄
2^z̄&)L12x. For x, we take the value proposed in Ref.@16#,
x.0.24. Note how all the discrete distributions collapse u
der rescaling onto a single continuous curve, which is cl
to Gaussian, though slightly skewed: it is remarkable t
scaling holds for the smallest system sizes. These exac
sults are in total agreement with the findings of compu
simulations.

The avalanche size distributionf (S) ~in the attractor! is
not difficult to calculate knowingD(s) andW. We can write

f ~S!5(
;s

p~S/s!D~s!, ~25!
02610
s
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e
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where S is the avalanche size,s the state of the pile, and
p(S/s) is the conditional probability of having an avalanch
of sizeS starting from a states. For this term we have

p~S/s!5 (
; js.t.Ss j5S

Ws j5(
; j

Ws jdSs jS
, ~26!

whereSs j is the size of the avalanche triggered in the tra
sition from s to j and can be calculated as

Ss j5 (
x51

L

@hs~x!2hj~x!#~L2x11!1L, ~27!

which is essentially the profile difference times the distan
to the exit, plus the contribution of the added grain. The
fore we have

f ~S!5(
;s

D~s!(
; j

Ws jdSs jS
. ~28!

The corresponding distribution calculated in this mann
for L58 andp51/2 appears in Fig. 5, where it is compare
with the result obtained from computer simulations. No
how even for such a small system there are avalanches
probability smaller than 10222.

VII. DISCUSSION

To summarize, we have shown that the conditions ab
the states put forward in Ref.@31# are necessary and suffi
cient to define the attractor of the Oslo model, which mo
over is unique. In addition, its nonperiodical character allo
7-9
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FIG. 4. ~Color! Stationary distribution ofQ @or of heights at the top,h(1)], centered by the mean and scaled byL0.24. System size ranges
from L51 to L58, andp51/2. Notice how all the discrete distributions for each system size conspire to give a smooth curve, w
close to Gaussian, although slightly skewed.
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the existence of a single occupation distribution in the s
tionary limit. The Abelian property enables the calculation
the transition probabilities between the different states,
from the decomposition of a system of sizeL into its leftmost
02610
-
f
st

column and anL21 subsystem and by using an iterativ
toppling procedure; this allows to explore the network
connections in phase space.~Nevertheless, an in-depth inves
tigation from the point of view of complex networks woul
slo
FIG. 5. ~Color! Stationary distribution of avalanche sizes forL58 andp51/2 from our exact procedure and from simulations of the O
model.
7-10



-
o
s
ta
rg
e
te

e
th
iz

ix
n
av
th

n
ad
du
hi
he
s
ch
ng
n
b
he
n

in

tin
gh
th

ns
a
ro
ze
to
s,
ee

all
ctor
n

m-

rep-
ce
ilities

ct
ith
ions
or
till

rge
get
that
se,
le
the
n to
ne-

,
an-
slo
sen
o
nu-
ible

i-
e

CALCULATION OF THE TRANSITION MATRIX AND OF . . . PHYSICAL REVIEW E 69, 026107 ~2004!
be very illuminating, for sure@40#.! Unexpectedly, the sta
tionary occupation distribution turns out to be the last file
the transition matrix, i.e., that corresponding to the tran
tions of the steepest state. Both the transitions between s
and their occupations can take values in an extremely la
range of probabilities, setting a clear difference with oth
SOC systems. These calculations are exact for the sys
sizes involved, and could be performed for anyL, in prin-
ciple. In practice, we have strong limitations, as is explain
below. Finally, with these quantities we can also derive
form of the fluctuations of the profile and the avalanche s
distribution, for the corresponding value ofL.

In fact, the knowledge of the transition probability matr
and the stationary distribution allows the calculation of a
property related to the profile of the pile, as the ones we h
just mentioned or the dissipated-energy distribution,
trapping-time distribution~approximately!, and the damage
spreading. But there are other properties that do not o
depend on the profile but also on the dynamics which le
from one profile to another, for instance, the avalanche
ration: knowing the profiles is not enough to calculate t
quantity; in fact, with the same initial and final states t
duration is not uniquely defined, i.e., there are many way
end in the same state with a different number of avalan
time steps, depending on the actual sequence of toppli
So, despite the usefulness of the Abelian property, it does
allow to calculate dynamical magnitudes. This could
solved, in principle, with a parallel calculation stating t
probability that a given transition would involve a give
time; nevertheless, it would be rather complicated.

Also, the profiles, that is, the configurations defined
terms of slopes~or heights!, do not retain any information
regarding individual grains. Grains are therefore undis
guishable whereas for the calculation of transit times or fli
lengths one needs distinguishable particles. This is ano
limitation of the current method difficult to overcome.

On the other hand, the equations obtained for the tra
tion probabilities have the advantage that one does not h
to simulate the system, and therefore one obtains exact p
ability distributions. The fact that for a small system of si
L58 there are occupation probabilities in the attrac
smaller than 10220, and even smaller transition probabilitie
indicates that the results we achieve would not have b
ed

.

n
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possible just with computer simulations even for such sm
sizes. But the enormous number of states in the attra
~which increases as 2.6L) makes impossible any calculatio
by hand beyond the smallest values ofL. Symbolic computer
calculations, performed byMAPLE or similar programs, have
also severe limitations of size, and even with numeric co
putations the system size is limited to aboutL<10 ~for L
510 there are more than 104 recurrent states, which would
require 108 matrix elements!. Also, the number of different
matrix products gets very large withL. Although the results
we obtain for small systems are interesting enough and
resentative of the complexity of the model, it would be ni
to have access to supercomputers to increase the capab
to manage larger system sizes.

To conclude, it is interesting to point out that having exa
analytical results for some problem is not synonymous w
understanding; in this case we can obtain exact express
for the transition probabilities, the stationary distribution,
the avalanche size distribution, but from these formulas s
it is not clear which are the properties of the system for la
L. For instance, for the avalanche size distribution we can
very complicated exact equations, but we cannot show
they tend to a power law in the asymptotic limit. In any ca
in my opinion, the results in this paper imply a remarkab
progress in our picture of complex systems. Of course,
exact scheme presented here is amenable to applicatio
extensions or variations of the Oslo model, and to other o
dimensional systems with boundary driving.
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@25# M. Markosová, M.H. Jensen, K.B. Lauritsen, and K. Sneppe

Phys. Rev. E55, R2085~1997!.
@26# D.A. Head and G.J. Rodgers, J. Phys. A32, 1387~1999!.
@27# P.M. Gleiser, S.A. Cannas, F.A. Tamarit, and B. Zheng, Ph

Rev. E63, 042301~2001!.
@28# P.M. Gleiser, Physica A295, 311 ~2001!.
@29# A. Benyoussef, A. El Kenz, M. Khfifi, and M. Loulidi, Phys

Rev. E66, 041302~2002!.
@30# Honestly speaking, there have been proposed other mode

account for power-law distributed avalanches in rice piles:
though Ref. @41# shows a very good agreement for th
avalanche-size distribution, the model there does not hav
clear representation as a sandpile, in the sense that it doe
02610
,

s.

to
l-

a
not

provide microscopic rules for the motion of grains and the
fore does not allow the measurement of other quantities
addition, it has been argued that scale-invariant trapping
transit times are not directly related to SOC, see Re
@8,26,42#. Certainly it would be interesting to explore in mor
detail which properties are characteristic of SOC and wh
are not.

@31# A. Chua and K. Christensen, e-print cond-mat/0203260.
@32# D. Dhar, e-print cond-mat/0309490.
@33# If we took as an initial condition a configuration with negativ

slopes, the rules would lead the system, after some time
only positive slopes.

@34# D. Dhar, Phys. Rev. Lett.64, 1613~1990!.
@35# D. Dhar, Physica A263, 4 ~1999!.
@36# D. Dhar, e-print cond-mat/9909009.
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